
ResXML Frequently Asked
Questions

Paul Hoadley, Logic Squad <paulh@logicsquad.net>

$Date: 2004/11/10 13:37:19 $

1. Introduction

1.1. What are the aims of this project?

The overriding aim was to create an XML application for the presentation-ori-
ented markup of resumes or curricula vitae. By ‘presentation-oriented’ I mean
that the intention was to make this system suitable for producing actual output
from the XML—output that would actually be used in the way resumes are
normally used. In other words, the intent was never to make a document type
suitable for, say, interchange between corporate human resources departments.
The original motivation was drawn from the fact that over a period of years, the
nebulous concept that was my own resume had inadvertently spread itself over
numerous different Microsoft Word files. There were several problems with
this. Word's ‘.doc’ format is an awful choice from an archival point of view,
and possibly an even worse choice from a presentation point of view. It's quite
conceivable that within a few years, current versions of Word won't even be
able to open older versions of my resume. When that time comes, the data con-
tained in those files is essentially lost. The idea of having a central repository
for the information itself that is separate from the eventual presentation is appeal-
ing, and XML was the obvious choice for achieving this. It simply inverts the
old model: now, there's one file with all the information, and I produce versions
of the resume tailored to a purpose as I need them—when they are no longer
required, they can be deleted safe in the knowledge I can regenerate them if ever
required. This contrasts with the historical situation: the data is spread over
multiple files and I need to actively retain old resumes as they are the only repos-
itory of the information itself.

1.2. Why do we need yet another XML application for marking up resumes?

The basic answer here is that I didn't like what was freely available. A resume
or curriculum vitae is a relatively personal document, and I like mine structured
in a particular way (in terms of both the information content and the eventual
presentation). At the same time, my intention was always to make that structure
fairly general so that it might appeal to other people as well. Before starting the
project, I surveyed the available XML offerings. Certainly Sean Kelly's work

1

http://www.w3.org/XML/
http://www.goldmark.org/netrants/no-word/attach.html

with XML Resume Library is impressive (and some of my own schema is inspired
by it) but it just wasn't quite what I wanted. For example, I prefer my achieve-
ments and employment record to largely stand on its own, at the expense of more
abstract ideas like a section for a person's overall objectives. Your mileage may
vary.

There is a group called the HR-XML Consortium who develop an XML applic-
ation for resume data. The following is how they describe themselves on their
website:

The HR-XML Consortium is an independent, non-profit organization
dedicated to the development and promotion of a standard suite of XML
specifications to enable e-business and the automation of human re-
sources-related data exchanges.

The ResXML Project has a completely different focus: generating something
for a job-seeker to hand over to a prospective employer. I have not had an ex-
tensive look at the HR-XML DTD, but our aims would seem sufficiently diver-
gent to assume that there is room for two different models.

2. Using the schema and stylesheets

2.1. What output formats are supported?

Currently there are XSLT stylesheets to produce HTML output and XSLFO for
transformation into PostScript or PDF. If you need plain text, get a plain text
HTML browser such as Lynx to dump the HTML version to file. If you need
Microsoft Word's ‘.doc’ format, I'd first re-evaluate whether you really want
to work for someone who believes Word to be a universal interchange format,
and then investigate the Jfor project as a means of transforming XSLFO to RTF.

2.2. What operating systems are supported?

One of the nice features about XML, and most applications based on it,1 is that
it is largely operating system neutral. The software requirements for using this
system are considered below, but basically any operating system for which there
are a set of appropriate XML tools will be just fine.

2.3. What XML processing tools will I need?

Although you can get by without one, an editor that knows about XML syntax
is a great help. Good editors can ensure that you are using only the permitted

1Here I am using the term ‘application’ to mean an XML schema and associated transformation stylesheets
rather than a conventional application that just happens to use XML as a data format.

2

ResXML FAQ

http://xmlresume.sourceforge.net/
http://www.hr-xml.org/
http://www.w3.org/Style/XSL/
http://www.w3.org/MarkUp/
http://www.w3.org/TR/xsl/
http://www.adobe.com/products/postscript/main.html
http://www.adobe.com/products/acrobat/readstep2.html
http://lynx.browser.org/
http://www.jfor.org/
http://www.biblioscape.com/rtf15_spec.htm

tags at the right time, can prompt you for attribute values and automatically close
tags.

To produce output from your resume marked up in XML, you need first an XSLT
processor. This tool will transform your XML source into either HTML or an
intermediate format called XSLFO on the way to print output. A non-exhaustive
list of XSLT processors (and their authors in parentheses) follows:

• xsltproc (Daniel Veillard)

• Saxon (Michael Kay)

• Xalan (The Apache XML Project)

The tools written in Java (Saxon and Xalan) are available for any platform which
has a JVM, including Microsoft Windows.

To generate PostScript and PDF from XSLFO requires an XSLFO renderer.
Some open source implementations exist, though none are complete:

• FOP (The Apache XML Project)

• PassiveTeX (Sebastian Rahtz)

The ResXML XSLFO stylesheet output is tested with FOP, and the resulting
PDF is perfectly acceptable. There are two commercial products available, and,
although expensive, they are much closer to full implementations of XSLFO:

• XEP (RenderX)

• XSL Formatter (Antenna House)

Personally, I recommend XEP. It is written in Java, and will run on any operating
system that has a JVM (including FreeBSD, NetBSD, OpenBSD, Linux, Sol-
aris and Microsoft Windows).

2.4. So how do I actually make a resume?

There are two basic steps involved: marking up your resume as an XML docu-
ment conforming to the ResXML schema, and then processing this document
into one of the output formats.

The easiest way to mark up your resume is to use an XML editor of some kind.
This could be either a dedicated XML editor (for example, xmlspy from Altova),
or an ordinary text editor that is XML-aware in some way (such as GNU emacs

3

ResXML FAQ

http://xmlsoft.org/XSLT/xsltproc2.html
http://saxon.sourceforge.net/
http://xml.apache.org/xalan-j/
http://xml.apache.org/fop/index.html
http://www.tei-c.org.uk/Software/passivetex/
http://www.renderx.net/Content/tools/xep.html
http://www.antennahouse.com/
http://www.xmlspy.com/
http://www.gnu.org/software/emacs/emacs.html

from the Free Software Foundation and the PSGML or nXML editing mode).
You will need to point the editor at the ResXML DTD (for PSGML) or the Relax
NG schema (for nXML). How you do this will vary between editors. Using GNU
emacs and PSGML, for example, it is sufficient to provide the location of the
DTD in the DOCTYPE element:

<!DOCTYPE resume SYSTEM "resume.dtd">

Note

At this point, if you are using GNU emacs and PSGML, press
Ctrl-C-Ctrl-P to re-parse the doctype and read in the DTD.

The procedure for getting started will vary between editors, though it should be
well explained in your editor's documentation. Similarly, the procedure for cre-
ating and adding content to elements in the document will vary. Your editor
should be able to discern that the top-level element is resume from the doctype.
From there, you should start by creating a header element and providing the
information that belongs there.

Once you have marked up your resume as an XML document, you are ready to
use the XSL stylesheets to transform it into HTML or PDF. Performing this step
is dependent on which XSLT processor and FO renderer you are using. As an
example, we will look at how to use xsltproc and XEP to transform the XML
source into PDF. Firstly, transform the XML into XSL-FO using xsltproc:

> xsltproc -o myresume.fo resume-fo.xsl myresume.xml

This will produce an XSL-FO file called myresume.fo from the input file
myresume.xml. You can then render this to PDF with XEP:

> xep.sh -fo myresume.fo -pdf myresume.pdf

Note

This assumes xep.sh is in your command path. You can provide
an absolute path to xep.sh if it is not.

You should now have your resume formatted as a PDF file called myre-
sume.pdf.

2.5. I know what I'm doing—where do I get the distribution from?

You can download a compressed tar archive of all the source code from
ResXML's SourceForge.net File List page.

4

ResXML FAQ

http://www.lysator.liu.se/projects/about_psgml.html
http://www.thaiopensource.com/nxml-mode/
http://www.relaxng.org/
http://www.relaxng.org/
http://sourceforge.net/project/showfiles.php?group_id=123001

3. Contact and contributions

3.1. Who are the authors?

Paul A. Hoadley•

• Philip Roberts

3.2. Is there a mailing list?

Yes. There is a list for users and a list for developers, both hosted at SourceForge.

3.3. Can I help out?

Sure. Check out the ResXML Project page at SourceForge. Download the code.
Join one or both of the mailing lists. Tell us what you think.

5

ResXML FAQ

mailto:paulh@logicsquad.net
mailto:phil@logicsquad.net
http://lists.sourceforge.net/lists/listinfo/resxml-users
http://lists.sourceforge.net/lists/listinfo/resxml-devel
http://sourceforge.net/projects/resxml/
http://sourceforge.net/
http://sourceforge.net/project/showfiles.php?group_id=123001

6

	ResXML Frequently Asked Questions

